

think simulation

getting the chemistry right

OLI Corrosion Modeling Basics

using OLI Studio: Corrosion Analyzer

Diana Miller, PhD

May 26th, 2020

Agenda

- Introduction to OLI Studio:
 Stream Analyzer and Corrosion Analyzer
- Introduction to the OLI Corrosion Model
- Seawater Corrosion

 Material Selection
- Pourbaix Diagrams

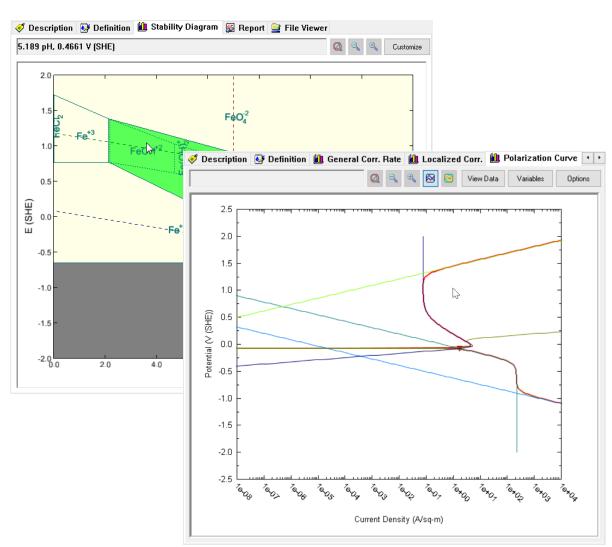
 Au-H2O and Fe-H2O systems
- Effect of Inorganic Inhibitors on Corrosion Rates
- Q&A Section

OLI Studio: Stream Analyzer Overview

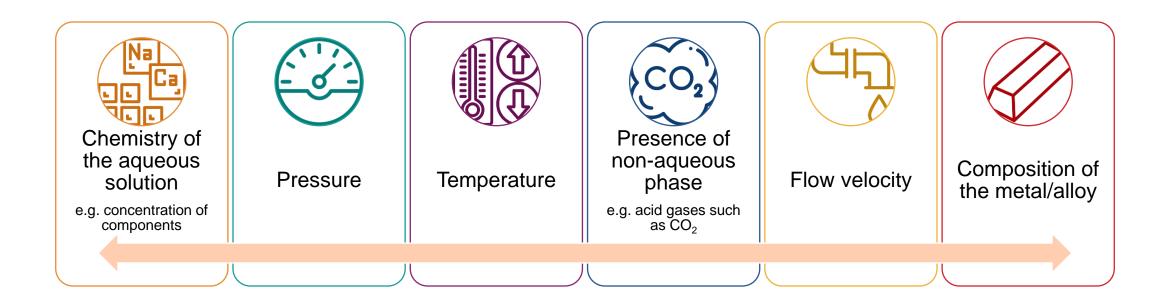
Stream Analyzer is a comprehensive thermodynamic tool that calculates:

Speciation, Phase equilibria, Enthalpies, Heat capacities, Densities, etc., in mixed-solvent multicomponent systems

Capabilities and features of Stream Analyzer include:


- Three different thermodynamic frameworks:
 - Aqueous (AQ) model
 - Mixed Solvent Electrolyte (MSE) model
 - Mixed Solvent Electrolyte and Soave-Redlich-Kwong (MSE-SRK) model
- Thermophysical properties: Stream Analyzer has thermophysical models to predict surface tension, interfacial tension, viscosity, electrical conductivity, thermal conductivity, diffusivity, and osmotic pressure.
- **Molecular and ionic inflows:** Stream Analyzer accepts molecular inflows typical of a process stream; and ion inflows typical of a sample water analysis.

OLI Studio: Corrosion Analyzer Overview


Capabilities and features of Corrosion Analyzer are:

- ✓ Calculation of general corrosion rates
- ✓ Localized corrosion susceptibility calculating the worst-case pitting rate
- ✓ Generation of polarization curves plots
- ✓ Generation of Pourbaix (E vs pH) diagrams
- ✓ Heat treatment effect

Introduction to the OLI Corrosion Model

Corrosion rates in aqueous environments depend on multiple factors, such as:

To get an understanding of each one of these factors, or a combination of these factors, computational modeling is **advantageous**.

The strength of the OLI corrosion model is the ability to provide a realistic representation of **chemical equilibria** and **thermophysical properties** in the bulk solution, and at the same time, to account for the phenomena at the **metal-solution interface**.

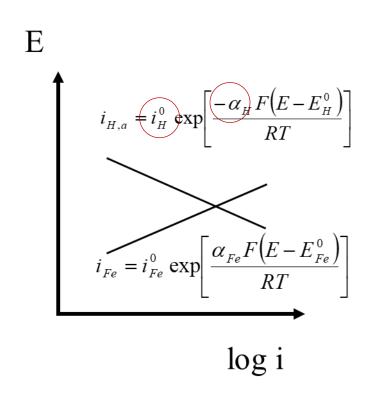
Introduction to the OLI Corrosion Model

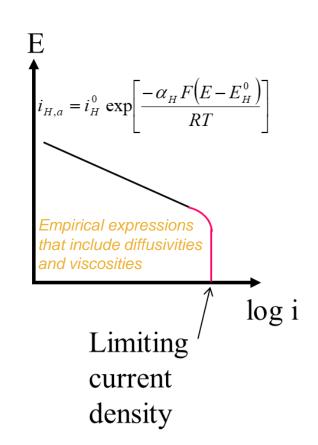
Thermophysical module

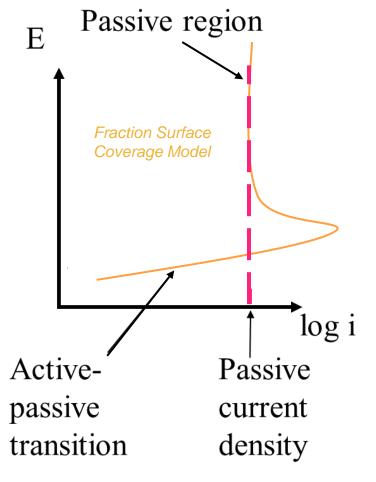
- Computes the speciation of species in aqueous solutions, e.g. $CO_2 + H_2O \rightarrow H^+ + HCO_3^-$
- Calculates the concentrations and activities of ionic species and neutral species in aqueous solutions
- Calculates transport properties of individual species, such as viscosity and diffusivity, to predict masstransfer effects

Thermodynamic Framework Aqueous (AQ)* model

Electrochemical module


- Simulates partial oxidation and reduction processes on the surface of the metal
- Reproduce the active-to-passive transition and effect of solution species on passivity
- Reproduce experimental corrosion rates using parameters calibrated using experimental data
- The prediction of corrosion potential and corrosion rates involves 3 aspects of Corrosion Kinetics:
 - Chemical Kinetics Activation control model
 - Mass Transfer Diffusion control model
 - Passivity Fraction surface coverage model


Prediction of corrosion rates


1. Activation Control

2. Diffusion Control

3. Passivity

Corrosion in Seawater

- Chlorides and oxygen in sea water can attack the films that passivate the steels.
- The Corrosion Analyzer will be used to:
 - Enter ionic inputs
 - Model the effects of chlorides and oxygen on the rates of uniform corrosion, and the propensity of pitting (localized corrosion)

1. Adding a Water Analysis

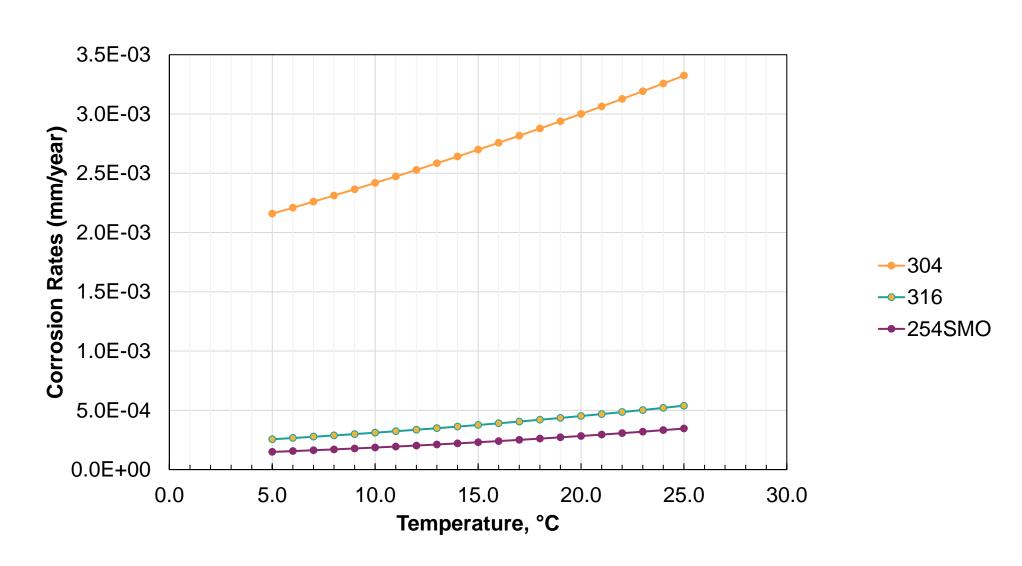
- Add a Water Analysis Add Water Analysis
 - Rename it Seawater
- Select the AQ Framework
- Add a water analysis given in the table to the right
- Go to the Add Reconciliation button
 - Rename it Deaerated Seawater
- Select Reconcile pH
- Click Calculate
- Go to the Report tab

Deaerated seawater composition

Species	Concentration (mg/L)
Cl ⁻	19000
Na ⁺	10700
Mg ⁺²	1300
Ca ⁺²	400
SO ₄ -2	2750
HCO ₃ -	150

Conditions

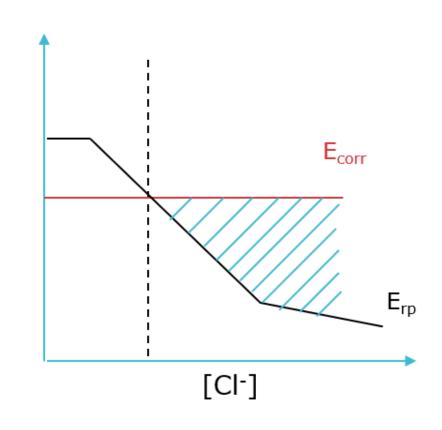
рН	8.0
Temperature	25 °C
Pressure	1 atm


2. Corrosion Rate Calculation

Corrosion of 304, 316 and 254SMO alloys in a **Deaerated** Seawater Solution

- Select the Molecular Deaerated Seawater
- Change corrosion rate units to mm/year, voltage to mV SCE, and current density to μA/cm²
- Go to the Add Calculation button and select Corrosion Rates
 - Rename it 304SS Corrosion Rates
- Change to survey by Temperature
 - Range T = 5 25°C by 1°C increments
- Flow Type: Pipe flow
 - Leave the default values for velocity and pipe diameter
- Select Stainless Steel 304 as the Contact Surface
 - A drop-down arrow will show the different alloys in the database
- Click Calculate
- Repeat the same steps for 316 Stainless Steel
- Go to the **General Corrosion** tab to analyze the corrosion rates

List of alloys		
Carbon Steel A212B	Ni	
Carbon Steel A216	Alloy 600	
Carbon Steel G10100	Alloy 690	
Carbon Steel 1018	Alloy 825	
Stainless Steel 304	Alloy 625	
Stainless Steel 316	Alloy C-276	
Alloy 254SMO	Alloy C-22	
Duplex Stainless 2205	Alloy 28	
Duplex Stainless 2207	Alloy 29	
13%Cr Stainless Steel	Alloy 2335	
Super13Cr Stainless Steel	Alloy 2550	
Super15Cr Stainless Steel	Cu	
Super17Cr Stainless Steel	CuNi 9010	
Aluminum 1199	CuNi 7030	
Aluminum 1100		

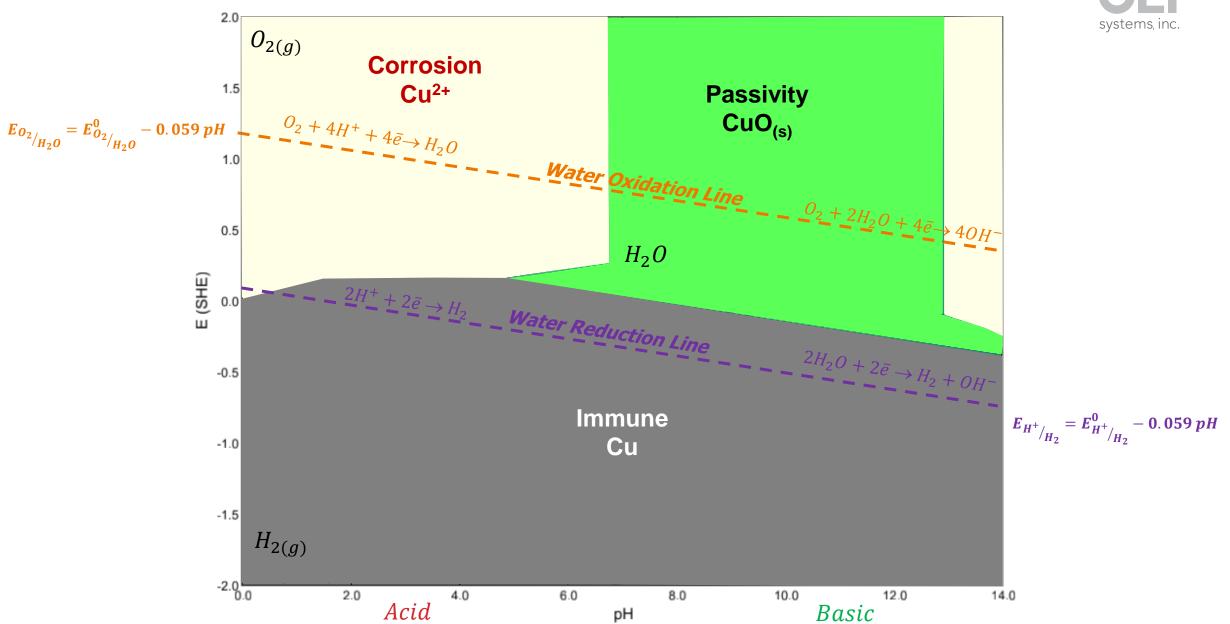

Corrosion Rates of 304, 316 and 254SMO alloys in Deaerated Sea Water as a Function of Temperature

Localized Corrosion

Potential

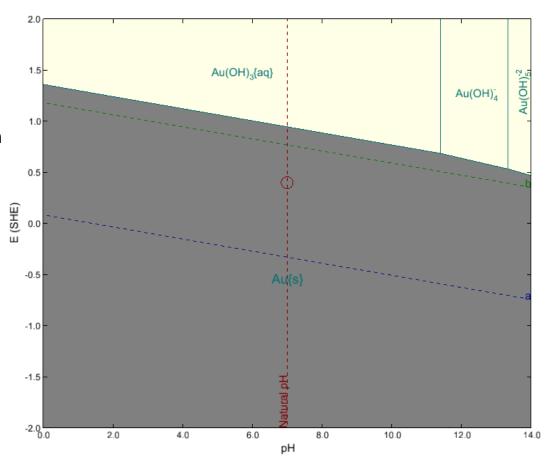
- The shaded area represent the region where E_{corr}>E_{rp}
- The shaded regions also represent the conditions under which pits can form
- The wider the E_{corr}-E_{rp} difference, the greater the propensity for localized corrosion

Real-solution Stability Diagrams


- Incorporates an accurate coefficient model for multicomponent systems (AQ, MSE, MSE-SRK thermodynamic models)
- Adds the ability to construct stability diagrams in wide range of T, P and concentrations of species
- Allows you to choose a solution component as an independent variable, so that the effect of any solution components can be studied explicitly
- Uses realistically modeled acids and bases to vary solution pH

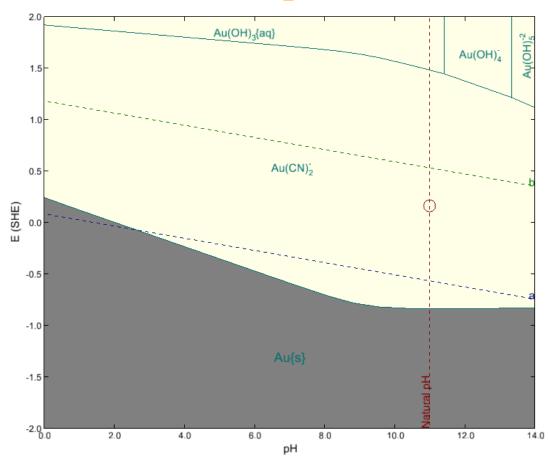
Picture Courtesy: Introduction to Corrosion Science by E. McCafferty

Pourbaix Diagram of Cu in H₂O at 25 °C



Why doesn't gold corrode?

- Add a new Stream
 - Rename it *Au Pourbaix Diagram*
- Select the AQ Framework
- Go to the Add Calculation button and select Stability Diagram
- Rename it Au-H2O system
- Add Au as the Contact Surface
 - Specs: Show ORP and No aqueous lines
- Add H2SO4 as the Acid Titrant
- Note: Notice that Re button turns ON
- Click Calculate
- Go to the **Stability Diagram** tab to see the Plot

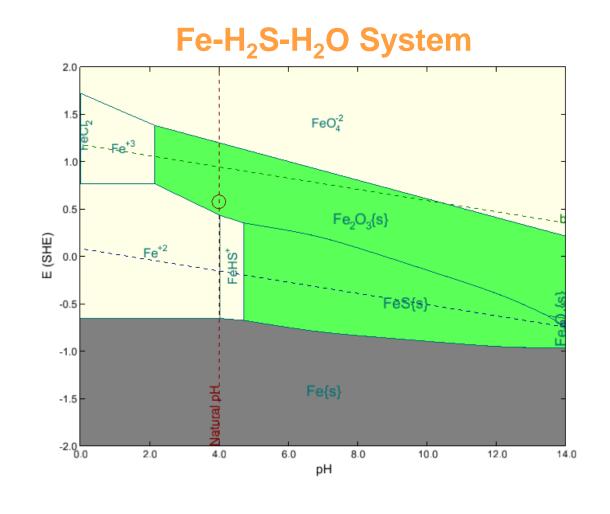

Au-H₂O system

Hydrometallurgy of Gold

- Go to the Add Calculation button and select Stability
 Diagram
- Rename it Au-CN-H2O system
- Add Au as the Contact Surface
 - Customize: Show ORP and No aqueous lines
- Add 1e-4 moles NaCN to the inflows
- Click Calculate
- Go to the **Stability Diagram** tab to see the Plot

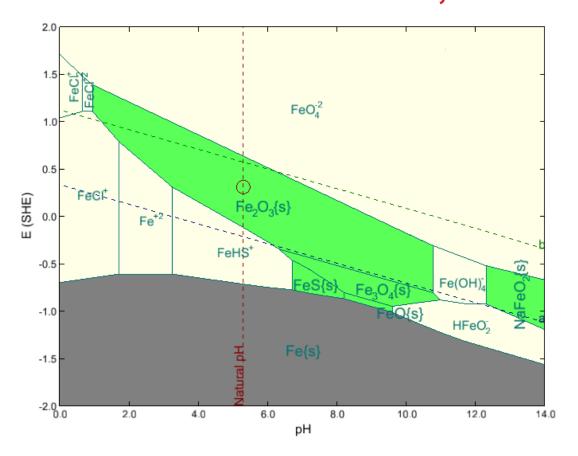

Au-CN-H₂O system

Stability Diagram of Fe in Water


- Add a new Stream
 - Rename it Fe Pourbaix Diagram
- Select the AQ Framework
- Go to the Add Calculation button and select Stability
 Diagram
- Rename it *Fe-H2O system*
- Add Fe as the Contact Surface
 - Show ORP and no Aqueous lines
- Click Calculate
- Go to the **Stability Diagram** tab

Fe-H2O system

Effect of H₂S on the Stability Diagram of Carbon Steel


- Go to Add Calculation button and select Stability
 Diagram
- Rename it Fe-H2S-H2O system
- Add Fe as the Contact Surface
- Add 1e-4 moles of H2S
- Click Calculate
- Go to the **Stability Diagram** tab

Effect of H₂S and Temperature on the Stability Diagram of Carbon Steel

- Go to Add Calculation button and select Stability
 Diagram
- Rename it Fe-H2S-H2O vs T system
- Add Fe as the Contact Surface
- Add 1e-4 moles of H2S
- Temperature and Pressure conditions
 - 25°C 1 atm
 - 80°C 1 atm
 - 250°C 60 atm
- Click Calculate
- Go to the **Stability Diagram** tab

250°C, 60 atm

Effect of Inhibitors on Corrosion Rates

- Evaluate the corrosion rates of a water storage tank made out of a 1-inch thick carbon steel 1018 containing aerated water.
- Which inhibitor should we add to increase the tank's lifetime by 10 more years?

Table 1. List of inhibitors studied in the OLI Corrosion Model. The corrosion model was validated with each one of these inhibitors and their effect on the decrease of the corrosion rate of Carbon Steel and some selected CRAs.

Inhibitor	Carbon Steel	CRAs
PO ₄ -3	✓	
MoO_4^{-2}	✓	\checkmark
NO ₃	✓	\checkmark
NO ₂ -	✓	
CrO ₂ ⁻⁴	✓	
SiO ₄ ²⁻	✓	

Note: When the concentration of Cl⁻ is too high the effect of these inhibitors on the reduction of corrosion rate is diminished.

Effect of Inhibitors on Corrosion Rates

Calculating the Corrosion Rates of Carbon Steel 1018

Inputs

• Temperature: 25 °C

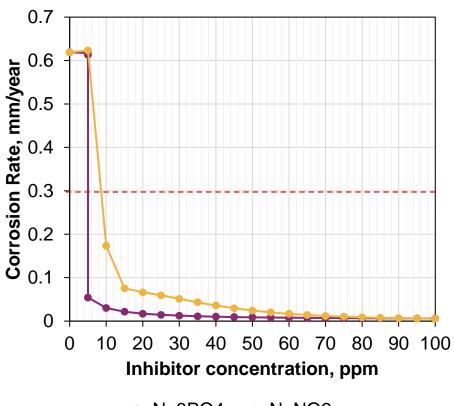
Pressure: 1 atm

Thermodynamic Framework: Aqueous (AQ)

• Solution: Water saturated with oxygen

Inhibitors: Silicates and Phosphates

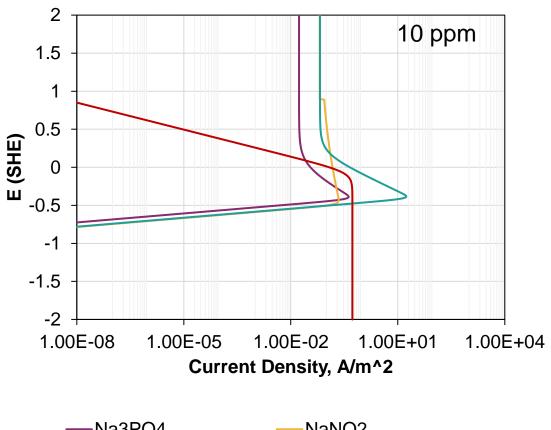
• Flow type: Static


Alloy: Carbon Steel 1018

Type of Calculation: Survey by Inhibitor composition

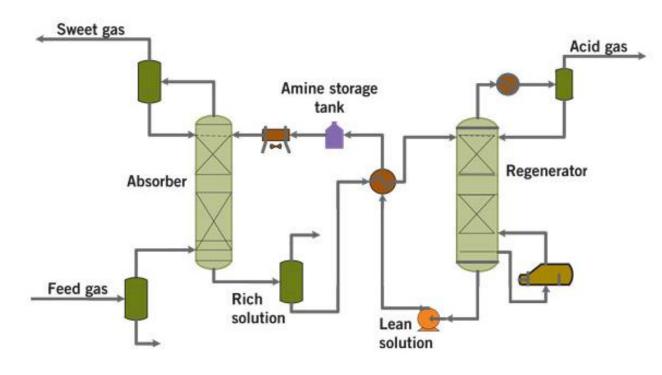
Outputs

- Corrosion rates as a function of inhibitor concentration.
 - Which is the optimal inhibitor concentration to increase the tank's lifetime?
- Change in the anodic and cathodic reactions and their final effect on the polarization curve


Simulation Results

→Na3PO4 →NaNO2

Life time =
$$25.4 \text{ mm} \times \frac{1 \text{ year}}{0.62 \text{ mm}} \approx 41 \text{ years}$$


Life time =
$$25.4 \text{ mm} \times \frac{1 \text{ year}}{0.3 \text{ mm}} \approx 85 \text{ years}$$

—Na3PO4—No inhibitor—NaNO2—O2 reduction reaction

Gas Condensate Corrosion

- Gas condensates from alkanolamine gas sweetening plants can be highly corrosive.
- Diethanolamine is used to neutralize (sweeten) a natural gas stream. This removes carbon dioxide and hydrogen sulfide. The off gas from the regeneration is highly acidic and corrosive.
- The Corrosion Analyzer will be used to:
 - Enter molecular inflows
 - Determine the dew point of the acid gas
 - Remove the condensed phase and perform corrosion rate calculations

Example 26 – Corrosion Rates

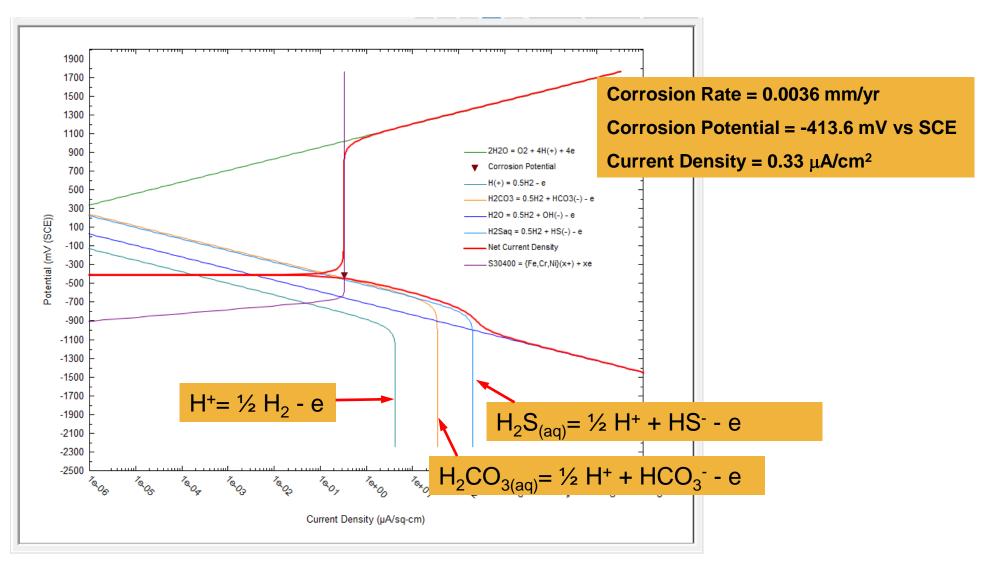
Calculating the Dew Point Temperature

- Add a new Stream
 - Rename it Gas Condensate
- Select the AQ Framework
- Change the **units** to Metric | Batch | Mole Frac.
- Add the chemistry in the table to the right
- Go to the Add Calculation button and select Single Point Calculation
 - Select Dew Point
 - Rename it Dew Point Temperature
- Click Calculate
- Go to the Report tab

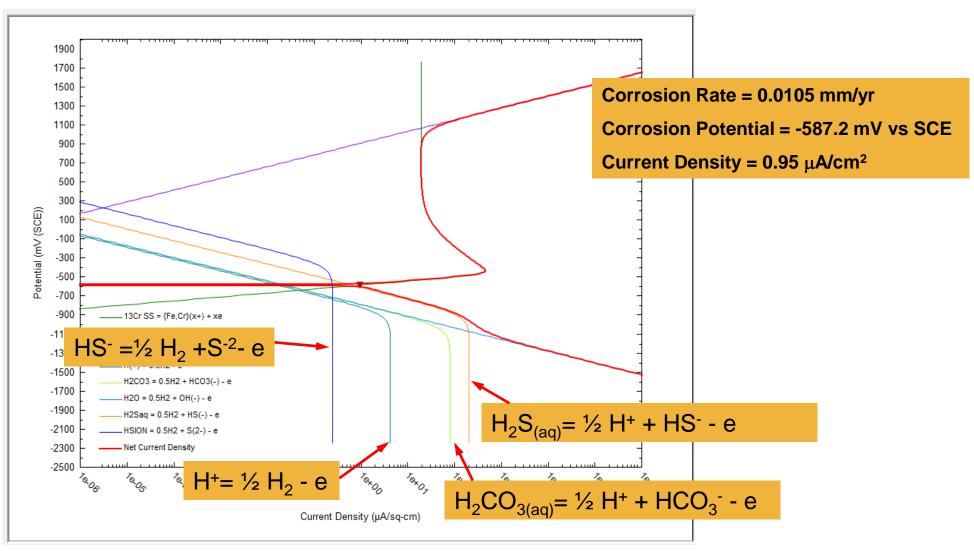
Conditions and composition of Acid Gas

Temperature	38 °C
Pressure	1.2 atm

Species	Concentration (mole %)
H ₂ O	5.42
CO ₂	77.4
N_2	0.02
H ₂ S	16.6
CH4	0.50
C2H6	0.03
C3H8	0.03

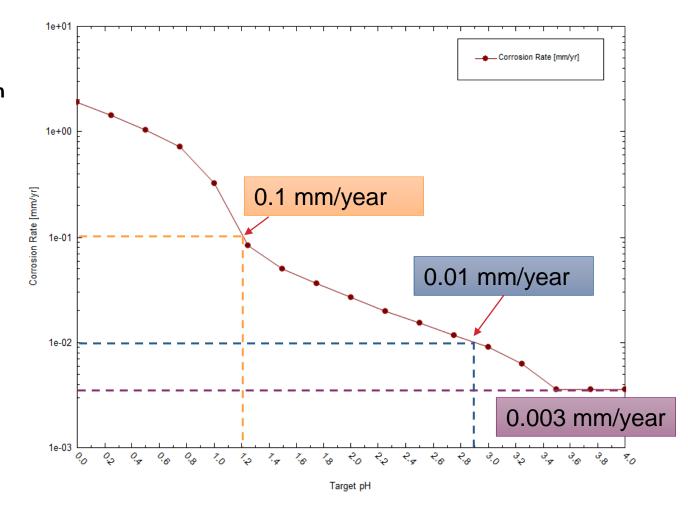

Example – Corrosion Rates

Calculating the Corrosion Rates of 304SS and 13% Cr


- Select the **Dew Point Temperature** Calculation
 - Add as a Stream
 - Name it: Corrosion Gas Condensate
- Go to the Add Calculation button and select Corrosion Rates
 - Select Single Point Rate
 - Name it: 304SS Corrosion Rate
- Flow Type: **Static**
- Select Stainless Steel 304 as the Contact Surface
- Click Calculate
- Do the same for 13% Cr
- Go to the General Corrosion tab and Polarization Curve tab

Alloy	Corrosion Rate
304SS	0.0036 mm/year
13%Cr	0.0105 mm/year

304 Stainless Steel Corrosion @ Dew Point



13 % Cr Steel Corrosion @ Dew Point

Corrosion Rates as a function of pH

- Select the Corrosion Gas Condensate Stream
- Go to the Add Calculation button and select Corrosion
 Rates
 - Select Survey by pH
 - Name it: 304SS CR vs pH
- **pH range** = 0 4 every 0.25 steps
- Flow Type: Static
- Select Stainless Steel 304 as the Contact Surface
- Click Calculate
- · Go to the General Corrosion tab

www.olisystems.com

